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3. Inverse modeling and data assimilation techniques 

 

3.1.  Monte Carlo 

(Still missing brief intro: bit of history, what kind of problems are 

solved with it etc?) 

           It is easy to understand that when a space of stochastic quantity is sampled 

randomly many times it is possible to derive a distribution on that space from the 

sample.  This is the desired result in the inverse problem, if obtainable. The random 

sampling is called Monte Carlo sampling (Mannon, 1999). The difficulty is that for 

multidimensional spaces such as the space of parameters which is transformed into the 

simulated measurements  in the inverse problems in the Geosciences, there are large 

regions of insignificant resultant probability, implying need to have very large samples.  

To reduce the number of samples, it is desirable to tend to sample regions which result in 
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significant probability. Several sampling techniques which posses this property are 

briefly described in this section.   

 

         Even when made “efficient” the Monte Carlo techniques are practical only for 

problems with relatively small number of parameters  (order of tens or less) and relatively 

fast models.   In the exercises (chapter 5) the reader could experience performance of an 

efficient Monte Carlo inverse technique, called Markov Chain Monte Carlo (MCMC) by 

Metropolis and Ulam (1949)  with models of varying degree of computational cost and 

complexity. Compared to other  techniques included in this practicum the  MCMC is by 

far the most costly.  

 

3.1.1. Metropolis 

 

                 In the inverse problem the interest is to sample  using (1.19).  This 

implies sampling of the conjuction of 

)(mpM

)(dDρ  and  from random independent 

samples with probability distribution 

)/( mdf

)(mMρ . One of most efficient techniques to do this 

is called Metropolis (Metropolis and Ulam (1949).  First it is assumed that each step in 

sampling is dependent only on the previous step. This is called Markov Chain (reference 

?). Second, the sampling is random at each step which is characteristic of  the Monte 

Carlo sampling but the move from one step to the next is controlled in the following way 

• If   then accept the transition from  to   )()( ij mLmL ≥ im jm

• If   then decide to randomly move to  or to stay at  with the 

following probability of accepting the move 

)()( ij mLmL < jm im
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mdfdmL
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)/()()(
ν

ρ is the likelihood function. Obviously, there has to 

be an initial estimate of   to be able to evaluate the likelihood function for 

the test at . 

)/( mdf

),( ji mm )(dDρ  is typically not produced by sampling but is assumed to 

be known density derived from knowledge about the specific measurement 

uncertainties. The initial estimate of  could result from : a) an independent 

random sampling, typically referred to as “burn in period” or b) approximation by a 

known density distribution function such as the Gaussian.  

)/( mdf

               In the Gaussian case  the likelihood function from (1.26) applies but the 

associated covariance is not known exactly. When it is further assumed that the 

measurements are independent random quantities the requirement to use an 

approximate covariance results in simpler requirement to specify an initial 

approximate variance for each measured quantity.   The approximated likelihood 

function is then 

 

( ) ( )[ ]meas
T

meas dmdmconstmL −Λ−= − )()(exp)(~ 1 φφ                   (1.32) 

 

where is diagonal matrix of the combined measurement and model uncertainties as 

in (1.27). During the random sampling using the criteria of the Metropolis technique 

the approximated likelihood function could be refined by introducing new estimates 

of the variance. 

Λ

 24



 

3.1.2. Simulated Annealing 

 

            When the goal is to produce just the maximum likelihood estimate by random 

sampling, the technique analogous  to the physical process of annealing could be used. 

The physical annealing consists of first heating than slow cooling of solids to ambient 

temperature to eliminate stress in the material. In the numerical technique labeled the 

“simulated annealing”  an energy function is defined 

))(ln()( mLTmE −=                                                                    (1.33) 

where T  is equivalent of temperature. The energy is always positive. The posterior 

probability density function  

T
mE

MM emconstmp
)(

)()(
−

= ρ  

 is at maximum when the energy function is at minimum. The technique consists of 

slow change of “temperature”  toward zero to render the energy minimum. The energy 

function for the probability density distribution in (1.27) which results from the 

conjuction of Gaussian distributions is the misfit function in the measurement space 

multiplied by a constant. 

( )))(())((),( 1
measD

T
meas dmCdmkmE −−Τ=Τ − φφ                            (1.34) 

 

             The assumption of independent measurements would render the covariance  

diagonal as in (1.32). The advantage of (1.32) or (1.34) is that the conjuction is  

explicitly and easily evaluated for any m . To test  applicability of (1.32) and (1.34) or 

to estimate the approximate variance it is desirable, if feasible, to “roughly” evaluate 

DC
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)/( mdf  or the conjuction )/()( mdfdDρ  by a simpler Monte Carlo sampling 

technique. For example, this could be performed by the Gibbs technique (Geman and 

Geman, 1984).   

 

The  following example (2.1) shows sampling of the conditional probability density 

function  in a problem with highly nonlinear model.   )/( mdf

 

Example 2.1 Lorenz’ chaos model  

Lorenz (1963) derived a parameterized model of atmospheric cellular dry convection 

assuming that the convection is occurring in a layer of fluid with uniform depth H  in 

the gravitational field and with constant temperature difference between upper and 

lower layer  boundary (denoted T∆ ). The model represents evolution of forced 

dissipative hydrodunamical system which possesses nonperiodic and unstable 

solutions. This kind of dynamical system is called chaotic. The governing equantions 

for the Lorenz’ model are 

bZXY
d
dZ

XZYrX
d
dY

YXa
d
dX

−=

−−=

−−=

τ

τ

τ
)(

                                                                     (1.34)       

Where X ,Y and Z are state components. X is proportional to the vertical motion, Y 

is equivalent to the temperature difference between ascending and descending fluid 

and Z is proportional to nonlinear variation of temperature in vertical direction.  
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Differentiation is performed with respect to dimensionless time τ .  are 

physical coefficient:  

),,( bra

o is ratio of the kinematic viscosity and thermal conductivity  a

o r  is ratio of Rayleigh number to its critical value which marks onset of 

convection. The Rayleigh number is directly proportional to , depth 

thermal expansion and inversely proportional to the viscosity and thermal 

conductivity  

T∆

o  is proportional to horizontal  spatial scale of a convective cell  b

 The control parameters in the model are initial conditions and physical 

coefficients. The model numerical solution for 

),,( 000 ZYX

)28,
3
8,10( === bra  and 

 is shown in figure 1.1 .   )1,1,1( 000 === ZYX

 

Figure 3.1: Solution of the Lorenz chaos model 
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The  solution has high and irregular variability in time. It is chaotic. This property 

represents  complex nonlinear relationship between states at different times and 

implies that the probability density function in the simulated measurements could 

have complex shape, far from the Gaussian.  is evaluated by the Monte 

Carlo sampling as would be performed  in the “burn in” phase of the Metropolis 

algorithm. The figures 3.2- 3.3 show the results.  

)/( mdf

 

Figure 3.2: Unnormalized histogram of at )/( mdf 2=τ  generated from  uniform 

distributions in the physical coefficients (left panels) and the initial conditions (right panels) 
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Figure 3.3: The same as 3.2 for 10=τ  

In the figure 3.2), a uniform bounded distribution of values of physical coefficients or  

initial conditions is used to simulate the exit distribution in the model solution for 

relatively short time period ( 2=τ  in Figure 3.1). The exit distributions in the left and 

right panels are significantly different. Those to the left which result from the 

uncertainties in the initial condition produce narrow unimodal distributions. The 

distributions in the right upper panel is also unimodal bud wider while the lower 

right panel displayes distinct bi-modal distribution. This is the consequence of the 

model chaotic  nonlinearity with respect to state (initial conditions). The model state 

solution with respect to the physical coefficients is mildly nonlinear rendering the less 

complex exit distribution. In the long simulations (Figure 3.2) the same results apply 

but are are more pronounced because the effect of  nonlinearities is stronger the 

longer the simulation. 
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3.2. Kalman Filter  

  

       The Kalman Filter class of techniques have been developed for solving 

engineering problems of system control by estimation of time evolving state of the 

system from erroneous measurements, as the state at one time controls the state at  

subsequent times (Kalman, 1960; Jazwinski, 1970). The Kalman Filter techniques 

have been introduced in 1990’s in the Geoscience disciplines to address similar 

problem. Several examples are mentioned in Chapter 1. An excellent introduction to 

the application of Kalman Filter techniques in the Atmospheric sciences is given in 

the article by Cohn (1997).   

              Central to the Kalman Filter class of techniques are the use of posterior 

conditional probability density and assumption that the prior, modeled and actual 

measurement probability densities are Gaussian. To connect to the general inverse 

problem theory as presented in chapter 2 following Tarantola (2005)  recall that the 

posterior conditional probability density resulting from conjuction of information on 

the space DM ×  is expressed by  (1.21)  

)()(
)/()()(1)/(

dpd
mdfdmdmp

DD

DM

ν
ρρ

γ
=  

Let  be a joint probability density which results from the conjuction of ),( mdg

)(dDρ  and . The associated conditional probability density reads )/( mdf

)(
),()/(

m
mdgmdg

Mν
=                                                             (1.35) 
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The posterior conditional probability density is then written assuming that the 

homogenous probability densities are constant 

)(
)/()()/(

dp
mdgmconstdmp

D

Mρ=                                         (1.36) 

The homogenous probability densities are constant when the  spaces M and  are 

linear (Tarantola, 2005).  The relationship (1.36) is then used as the solution of the 

general inverse problem (1.11). It is already discussed in chapter 2 that the use of  

either the marginal or conditional posterior probability density does not change the 

inverse problem. The problem is to find the probability density function which 

combines prior knowledge about the stochastic control parameters employed by the 

model with the stochastic measurements.  

D

             The assumption of Gaussian probability densities is less general. It is 

reasonable to pose the question: When is the use of Gaussian probability density 

valid? The Central Limit Theorem on the properties of cumulative stochastic 

quantities partially helps in answering the question. It states 

 

Central Limit Theorem: Cumulative distribution of any set of independent variables 

with any distribution having a finite mean and variance tends to normal distribution  

  

This theorem is readily interpreted in the measurement space as a large number of 

variety of different measurements of the same physical quantity would tend to 

produce normally distributed  cumulative estimate of that quantity. The problem may 

occur with measured quantities which are positive semi-definite ( ) with large 

probability near or at zero. A transformation of variable  

0≥d
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)(ˆ dd ϕ=                                                      (1.37) 

could help solve the problem if ϕ  is such that probability density function  is 

exactly or approximately Gaussian.  The validity of Gaussian probability density 

assumption in the parameter and model spaces is hard to justify for general case and 

must be addressed for each specific problem. Transformations similar to  (1.37) may  

be used.  

)ˆ(dq

             Assuming the validity of Gaussian probability density functions and the use 

of conditional probability density as the solution of inverse problem the theory of 

discrete Kalman Filter for linear class of models is derived using the approach from 

Cohn (1997), as follows.  Let the discrete model be   

t
kk

t
kk

t
k GwFw 1111 −−−− += ε                                                 (1.38) 

o
k

t
kk

o
k wHd ε+=                                                              (1.39) 

where  is a vector of numerical solution of a set of differential equations in 

discretized time and space. Subscript  denotes discrete time point, while 

superscripts  and o  refer to truth and observations, respectively. The first equation 

(1.38) expresses transformation of the “true” state from  time step  to  by the 

model’s discrete linear operator  plus an error relative to the true transformation. 

The error is assumed to be a linear stochastic forcing . This is the error in the 

model operator relative to the exact, typically unknown, transformation operator. In 

what follows the exact knowledge of deterministic error relative to the truth is not 

required but the knowledge of error statistics is.  

t
kw

k

t

)1( −k k

1−kF

t
kkG 11 −− ε
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               The second model equation (1.39) is the discrete linear transformation H  

from the true state to the measurements space (the observations) also characterized 

with linear error .  Substitution of (1.39) into (1.38) would render one model for 

simulation of transformation from the state at 

o
kε

1−k time to measurements at k . The 

separation of the model in two parts is motivated with goal to produce estimates of 

the state sequentially at discrete time points as new measurements become available 

after the  prediction is made by the evolution model (1.38) using an estimate of the 

true state at previous times. The evolution between )1( −k and  from the estimate 

is written 

)(k

e
kk

e
kk

f
k GwFw 1111 −−−− += ε                                                                   (1.40) 

The predicted state is then transformed into the measurement space  

o
k

e
kk

o
k wHd ε+=                                                                                (1.41) 

              The inverse problem is to find an estimate of the true state  from 

information about stochastic quantities , ,  and .  The conditional 

probability (1.36) is used for the solution. The prior probability density 

t
kw

f
kw o

kd t
kε

o
kε

)(mMρ is the 

probability density of the predicted state in (1.40). The probability density of 

measurements given the model   is the probability density of  in (1.41). 

The marginal probability density of the measurements is . The posterior 

conditional probability density is then written 

)/( mdg o
kd

)( o
D dp

)/(
)/()/()/(

1

1
o
k

o
k

t
k

o
k

o
k

t
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k
t
k ddp

wdpdwpconstdwp
−

−=                                                    (1.42) 
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The use of conditional probability density notation for the prior and measurement 

terms on the right hand side  is to indicate that both are conditioned on the 

measurements which are used prior to making the prediction.  This property implies 

that the solution (1.42) is recursive.  Assuming that all probability densities on the 

right hand side in (1.42) are Gaussian, the solution requires that the associated mean 

and covarinaces are specified.  

             From (1.40)  the mean and covariance of  are derived, 

respectively  
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   (1.43) 

 Here it is assumed that the mean of modeling error is identically zero (i.e., the error 

is “white noise”) and that the mean of probability density at is the central 

posterior estimate at that time, which is then propagated forward in time.  The mean 

and covariance of  and are derived using (1.41) and (1.43) 

along with assumption that the model error is white and that the estimate and model 

errors are mutually uncorrelated.  
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         Using (1.43)-(1.45) in the definition of Gaussian probability density function 

and substituting in (1.42) results in the expression for the desired posterior 

conditional probability density  

)
2
1exp()/( Jconstdwp o

k
t
k −=                                                               (1.46) 

where 

)()()(

)()()()(
1

11

fo
f

fo

ftftfofo

wdRHHPHwd

wwCwwHwdRHwdJ

−+−−

−−+−−=
−ΤΤ

−Τ−Τ

             (1.47) 

Cohn (1997) shows that  

( )[ ] ( )[ ])()()( 1 foftefoft HwdKwwCHwdKwwJ −+−−+−= −Τ         (1.48) 

( 111 −−−Τ += CHRHC e )

)

                                                                           (1.49) 

( 1−ΤΤ += RHCHCHK                                                                            (1.50) 

Substitution of (1.48)-(1.50) shows that the posterior conditional probability density 

function is Gaussian with mean and covariance, respectively 
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−−−Τ

−ΤΤ
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−++=

kk
e
k

f
kk
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kkkkk
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k

CHRHC

wHdRHCHHCww
                                         (1.51) 

The matrix K in (1.50) is called Kalman gain matrix because it is applied to the 

difference between actual and simulated measurements to correct the prior in (1.51). 

The mean and covariance in (1.51) could be obtained directly from the conjuction of 

Gaussian probability densities in section 2.4.4 as application of (1.30) to the problem 

in this section where the prior is produced sequentially from prediction using the 

posterior solution at previous time instance.    
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           The most celebrated property of the Kalman Filter is that the entire probability 

density function is predicted to produce the new prior because both moments of the 

Gaussian probability density function are advanced in time by (1.43). The Kalman 

Filter is however difficult to apply exactly even for exactly linear models when the 

number of elements N in the state vector is  large as it requires prediction of the 

covariance matrix of the size .  The filter could be applied exactly to smaller size 

problems (order of 100)  with efficiency that may exceed the performance of a Monte 

Carlo type algorithm. Feasibility of the Kalman Filter theory is extended by 

introduction of the ensemble approach in section 3.4.  

f
kw

2N

 

3.3.  Variational techniques 

 

It is shown in section 2 that posterior probability density function (pdf) is 

expressed 

( )

( ) ( ) ( ) ( )[ ]priorm
T

priormeasD
T

meas

M

mmCmmdmCdmmS

mSconstmp

−−+−−=

−=

−− 11 )()(
2
1)(

)(exp)(

φφ

       

(1.52) 

under condition that the prior, modeled and actual measurement stochastic quantities 

have the Gaussian pdfs. This condition is used in derivation of the Linear Kalman Filter 

technique in section 4 together with assumption that the models which represent 

evolution of a dynamical system and the mapping or transformation into the measurement 

space are both linear.   These conditions together render solution of the inverse problem 
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in the model state space ( ) with Gaussian posterior probability density function.  

The mean of posterior distribution in this case is the minimum of the cost function . 

The Linear Kalman Filter technique is not, however,  widely used in the Geosciences 

because it requires numerical evaluation and inversion of very large matrices and because 

it is derived for strictly linear model. Instead of evaluating the entire posterior Gaussian 

pdf,  the inverse problem could be reduced to solving for a central estimate such as the 

mean or maximum. In section 2.3 it is shown that the mean is central estimate under 

minimum variance criterion for any distribution. In the Gaussian posterior pdf case the  

mean and maximum are the same. This property implies that the mean also satisfies 

maximum likelihood criterion.  

e
kwm =

)(mS

 

If the condition of linear model is eliminated, which eliminates validity of the 

Gaussian  posterior pdf,  but the prior, modeled and actual measurement pdfs remain 

Gaussian the minimum of cost function would still satisfy the maximum likelihood 

criterion. This property suggests the use of cost function minimum to obtain the 

maximum likelihood central estimate for unknown posterior distribution. The inverse 

problem of this kind is more general than the problem addressed in the Linear Kalman 

Filter but less general in solution as it does not attempt to evaluate the entire posterior 

pdf.  

The minimization of a quadratic misfit function such as the cost function in 1.51 

defines an entire class of problems in the estimation theory which is commonly referred 

to as Least Square problem (Crassidis and Junkins, 2004; Lewis et al, 2006; Tarantola, 

2005).  The least square problem was first introduced by Gauss (1809) to determine 
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planetary orbits from an orbit model and telescope measurements of the line of sight 

angles.    In this original work the sum of squares of un-weighted differences between 

model and observations is minimized. This kind of least square problem is commonly 

referred to in modern literature as unconstrained least square problem without weights 

and prior. In the cost function (1.51) the absence of weights is equivalent to assuming 

that  ( ICD = I is identity matrix), while no-prior implies . The unconstrained 

property implies that the minimization is performed directly on the cost function without 

additional functional relationship on the parameter space. The least square problem 

defined by (1.51)  is thus referred to as  constrained, weighted with prior.   The constraint 

is provided by a model such as prediction model (1.38) in the previous section.  

01 =−
MC

 The minimization of cost function could be desirable problem to solve even for 

the linear models if the inversion of large matrices could be avoided. The least square 

problems (linear and nonlinear) could be solved relatively efficiently by  Variational 

technique (Kalnay, 2004, Lewis et al, 2005). The solution is obtained by use of  the 

variational calculus which involves evaluation of directional gradients of the cost 

function (Crassides and Junkins, 2005; Tarantola, 2005; Bryson and Ho, 1975).  There 

are numerous minimization techniques described in the literature on optimal estimation 

and control theory which make use of the cost function directional gradients. In essence 

they use the following well known properties of functions 

Necessary and sufficient condition for a minimum of a function  which is at 

least twice differentiable  are, respectively 

)(xf

0=
∂
∂

x
f  and 02

2

>
∂
∂

x
f  
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where x is vector of independent variables (equivalent of parameter space).  Second order 

truncated Taylor series expansion for  at an arbitrary point  reads )(xf *x
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2
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      (1.53) 

Differentiation with respect to x  and setting minxx = , together with the necessary 

condition yields 
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This relationship shows that a minimum of function is directly proportional to 

negative of the first directional derivative at an arbitrary point  in the neighborhood of 

the minimum. The use of second order Taylor expansion approximation is made possible 

by assumption that this point is not far from the minimum. For the exactly quadratic 

function, the second order truncation is exact. The cost function in 1.51 is exactly 

quadratic if the model is linear and approximately quadratic in the neighborhood of the 

minimum if the model is nonlinear. Consequently, the relationship (1.54) may be used to 

find the minimum if these conditions are satisfied. It is obvious that unless the function is 

exactly quadratic, the minimum obtained in this way may not be global.  

*x

 

The nature of minimum should be examined for each application specifically if 

possible by inspection of extent of the neighborhood around the computed minimum 

within which . The neighborhood should be spanning the range of 

parameter values with large  cumulative probability. This condition is difficult to inspect 

)()( minxSxS j >
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for large multi dimensional problems. A natural test of improvement brought about by 

results of the inverse problem with the prognostic type model may be to verify the 

prediction against new  measurements, assuming  that the modeling errors are small 

within forecast temporal range. If the prediction is better with than without the solution of 

the inverse problem, the inverse technique has skill, implying that the assumptions used 

in the technique are at least approximately valid. 

 

5.1 Variational solution of  constrained weighted minimization problem with 

prior 

 

In chapter 1 it is discussed that many models used in the Geosciences simulate 

time evolution of the natural system state.  Assume that the model of  interest is written 

as system of ODE-s 

( ) ),(, τεαχ
τ
χ GM

d
d

+=                                                                         (1.55) 

The models which do not simulate time evolution could be written in the same symbolic 

form but with 0=
τ
χ

d
d , implying steady state. The model (1.55)  is equivalent to the 

prognostic model (1.38) in section 4, but the time derivation is expressed in continuous 

form for convenience. The model and model error operators ),( αχM  and ),( τεG , 

respectively, are assumed in general nonlinear. The system state vector of physical 

quantities )(τχ  is in discretized space. The solution of (1.55) is subject to initial and 

boundary conditions, respectively   

priorχχ ττ =∆−   ,   )()( τχχ b=Ω ,                                                          (1.56) 
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where   denotes boundary of the spatial domain. The solution is also dependent on 

vectors of physical parameters 

Ω

)(τα  and model error )(τε .  In the inverse problem the 

measurements are contained in a vector of measured quantities in discrete spatial points 

at discrete times  ),( ττττ ∆−∈k , as in section 4. The transformation from the system 

state space into measurement space is as in section 4 

o
kkk hd εχτ += )()(                                                                                                       (1.57)                               

Unlike in the linear Kalman Filter, the transformation function h is assumed general 

nonlinear. The cost function (1.51) for the system (1.55-1.57) reads 
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(1.58) 

 

)( kττδ − is Kroneker delta function in time. The prior is represented with four terms 

instead of one   used in section 4, because the prognostic model solution depends on  four 

types of  control parameters. Each of these parameters could be varied to render the cost 

function minimum. The problem of finding the minimum of (1.58) under constraint given 

by (1.55)  can be compactly written 
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Where x is  vector of all control parameters .  The necessary condition at the 

minimum is 

1×m

0=
∂
∂

x
S . The condition for differential variation in the neighborhood of the 

minimum (Crassidis and Junkins, 2004) is then 
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∂
∂

= x
x
SS δδ                               (1.60a) 
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∂
∂

= x
x
δψδψ                             (1.60b) 

The minimum solution is then obtained by elimination of differential variations in each 

component of x  from (1.60b) and substitution into (1.60a). This could be very difficult to 

solve as the functional relationship in the constraint could be very complex and even not 

known explicitly. 

Lagrange derived transformation of the constrained minimization problem (1.60) 

into unconstrained by linearly combining equations in (1.59) to define new augmented 

functional  

ψλΤ+= SF                                                                            (1.61)    

λ  is Lagrange multiplier. The necessary conditions at the minimum of  read F

00 =⎥⎦
⎤

⎢⎣
⎡
∂
∂

+
∂
∂

⇒=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡
∂
∂

+
∂
∂

=
∂
∂ λψδλψδ

TT

xx
Sx

xx
Sx

x
F                  (1.62) 

0)( ==
∂
∂ xF ψδλ
λ

                                                                          (1.63) 

(1.62) is system of equations for unknown λ , while the second condition recovers the 

original constraint. Solving the dual system (1.62-1.63) is an elegant way of automatic 

differential elimination.  
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------------------------------------------------------------------------------------------------------------

------------ 

A simple example from (Crassidis and Junkins, 2004) illustrates this property 

Example #? 

Find minimum of  

32
6 zyS −−=  

under  constraint    036)5(4)4(9),( 22 =−−+−= zyzyψ  

------------------------------------------------------------------------------------------------------------

------------ 

 

The differential elimination by solving the dual system (1.63-1.64) is not applied  

explicitly in practice with large multidimensional problems but the solution of the system 

(1.61) is used. In what follows it is shown that for the large multidimensional control 

parameter space the vector of Largange multipliers is obtained from the solution of 1.61 

and that this solution is directly proportional to the vector of directional gradients of the 

cost function with respect to each control variable. This property allows numerical 

evaluation of the directional gradient vector which could be then used in  the relationship 

(1.54) or similar to compute the minimum. 

To derive (1.61) explicitly for the system (1.55-1.58)  define first the augmented 

functional  

 43



( ) ( ) ττεαχ
τ
χτλ

τ

ττ

dGM
d
dSF ∫

∆−

⎟
⎠
⎞

⎜
⎝
⎛ −−+= ),(,                                  (1.64)                               

 

The Lagrange multiplier is a vector of the same size as χ . The variation of augmented 

functional by the variation of what controls χ  is as follows  
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(1.67) 

Substituting (1.67) into (1.66) results in four terms within B2  in (1.66), one for 

each control parameter variation. When combined with A1-A4 in (1.65), it is easy to 

observe that there is common factor among contributions from each control parameter  
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The variation of augmented functional is now written  

 45



( )
)(

()(

)(

)(

1

1

1

1

end

priorf

bb

prior

C

dIGQ

dIMC

dIMCF

τλδχ

χχττλδχ

τλ
ε

εδε

τλ
χ

χχδχ

τλ
α

ααδαδ

τ

τττ

α

Τ

∆−
−

∆−

Τ
−Τ

Τ

Ω
Ω

−Τ
Ω

Τ
−Τ

+

−+∆−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡
∂
∂

−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

−−+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡
∂
∂

−−=

Τ

∫

∫

∫

                         (1.68) 

At the minimum 0=Fδ , leading to a system of ODEs for λ  as in (1.62).  Given 

than λ  is arbitrary,  additional conditions may be set for λ  without loss of generality. 

The condition  for all 0=I τ  results in new system of ODEs for λ , called adjoint 

system.    
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where  to indicate that the adjoint system is solved in reversed time (from end to 

beginning of interval). The adjoint system requires final and boundary conditions. They 

are set 

ττ −=*

          
0
0)(

=
=

Ωλ
τλ end                                                                                        (1.70) 

The convenience of conditions (1.69-1.70) is seen by substitution in (1.68). Given that 

the control variables are independent, the condition at the minimum reads 
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where λ  is solution of (1.69-1.70). It is critical to notice that this solution depends on χ . 

Consequently,  λ  in (1.71) is the solution of (1.69) for minχ  only. This property implies 

that the dual system (1.55) and (1.69) still must be solved simultaneously to make use of 

(1.71)  

The way out of this difficult condition which is virtually impossible to overcome 

in practice with  the large multidimensional models in the Geosciences, is to observe that 

the solution of (1.69) for an arbitrary point χ  is directly proportional to the directional 

gradient of cost function at the same point.  This is easily seen from (1.71) but without 

setting 0=Fδ . For example  
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when prior is neglected, for simplicity, the resulting relationship reads  
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